Sunday, June 26, 2016

Bioinformatika

Standard
Ledakan data/informasi biologi itu yang mendorong lahirnya Bioinformatika. Karena Bioinformatika adalah bidang yang relatif baru, masih banyak kesalahpahaman mengenai definisinya. Komputer sudah lama digunakan untuk menganalisa data biologi, misalnya terhadap datadata kristalografi sinar X dan NMR (Nuclear Magnetic Resonance) dalam melakukan penghitungan transformasi Fourier, dsb [4]. 

Bidang ini disebut sebagai Biologi Komputasi. Bioinformatika muncul atas desakan kebutuhan untuk mengumpulkan, menyimpan dan menganalisa data-data biologis dari database DNA, RNA maupun protein tadi. Untuk mewadahinya beberapa jurnal baru bermunculan (misalnya Applied Bioinformatics), atau berubah nama seperti Computer Applications in the Biosciences (CABIOS) menjadi BIOInformatic yang menjadi official journal dari International Society for Computational Biology (ICSB) (nama himpunan tidak ikut berubah) [5]. 

Beberapa topik utama dalam Bioinformatika dijelaskan di bawah ini. Keberadaan database adalah syarat utama dalam analisa Bioinformatika. Database informasi dasar telah tersedia saat ini. Untuk database DNA yang utama adalah GenBank di AS (Gambar 3) [6]. Sementara itu bagi protein, databasenya dapat ditemukan di Swiss-Prot (Swiss) [7] untuk sekuen asam aminonya dan di Protein Data Bank (PDB) (AS) [8] untuk Gambar 2. Pertumbuhan data nukleotida/basa DNA dalam GenBank. - 4 - struktur 3D-nya. Data yang berada dalam database itu hanya kumpulan/arsip data yang biasanya dikoleksi secara sukarela oleh para peneliti, namun saat ini banyak jurnal atau lembaga pemberi dana penelitian mewajibkan penyimpanan dalam database. Trend yang ada dalam pembuatan database saat ini adalah isinya yang makin spesialis. Misalnya untuk protein struktur, ada SCOP [9] dan CATH [10] yang mengklasifikasikan protein berdasarkan struktur 3D-nya, selain itu ada pula PROSITE [11], Blocks [12], dll yang berdasar pada motif struktur sekunder protein. Tak kalah penting dari data eksperimen tersebut adalah keberadaan database paper yang terletak di Medline [13]. Link terhadap publikasi asli biasanya selalu tercantum dalam data asli sekuen. 

Perkembangan Pubmed terakhir yang penting adalah tersedianya fungsi mencari paper dengan topik sejenis dan link kepada situs jurnal on-line sehingga dapat membaca keseluruhan isi paper tersebut. Setelah informasi terkumpul dalam database, langkah berikutnya adalah menganalisa data. Pencarian database umumnya berdasar hasil alignment/pensejajaran sekuen, baik sekuen DNA maupun protein. Metode ini digunakan berdasar kenyataan bahwa sekuen DNA/protein bisa berbeda sedikit tetapi memiliki fungsi yang sama. Misalnya protein hemoglobin dari manusia hanya sedikit berbeda dengan yang berasal dari ikan paus. 

Kegunaan dari pencarian ini adalah ketika mendapatkan suatu sekuen DNA/protein yang belum diketahui fungsinya maka dengan membandingkannya dengan yang ada dalam database bisa diperkirakan fungsi daripadanya. Algoritma untuk pattern recognition seperti Neural Network, Genetic Algorithm dll telah dipakai dengan sukses untuk pencarian database ini. Salah satu perangkat lunak pencari database yang paling berhasil dan bisa dikatakan menjadi standar sekarang adalah BLAST (Basic Local Alignment Search Tool) [14]. Perangkat lunak ini telah diadaptasi untuk melakukan alignment terhadap berbagai sekuen seperti DNA (blastn), protein (blastp), dsb. Baru-baru versi yang fleksibel untuk dapat beradaptasi dengan database yang lebih variatif telah dikembangkan dan disebut Gapped BLAST serta PSI (Position Specific Iterated)-BLAST [15]. Sementara itu perangkat lunak yang digunakan Gambar 3. Data sekuen DNA dalam GenBank. - 5 - untuk melakukan alignment terhadap sekuen terbatas di antaranya yang lazim digunakan adalah CLUSTAL dan CLUSTAL W [16]. 

Data yang memerlukan analisa bioinformatika dan cukup mendapat banyak perhatian saat ini adalah data hasil DNA chip (Gambar 4). Menggunakan perangkat ini dapat diketahui kuantitas maupun kualitas transkripsi satu gen sehingga bisa menunjukkan gen-gen apa saja yang aktif terhadap perlakuan tertentu, misalnya timbulnya kanker, dll. mRNA yang diisolasi dari sampel dikembalikan dulu dalam bentuk DNA menggunakan reaksi reverse transcription. Selanjutnya melalui proses hibridisasi, hanya DNA yang komplementer saja yang akan berikatan dengan DNA di atas chip. DNA yang telah diberi label warna berbeda ini akan menunjukkan pattern yang unik. Berbagai algoritma pattern recognition telah digunakan untuk mengenali gen-gen yang aktif dari eksperimen DNA chip ini, salah satunya yang paling ampuh adalah Support Vector Machine (SVM) [17]. Bioinformatika sudah menjadi bisnis besar sekarang. Perusahaan bioteknologi yang menghasilkan data besar seperti perusahaan sekuen genom, senantiasa memerlukan bagian analisa Bioinformatika. Produk Bioinformatika pun sudah dipatenkan baik di AS, Eropa maupun Asia [18]. Berdasar jenisnya produk yang dipatenkan itu bisa dibagi menjadi tiga yaitu (1) perangkat lunak Bioinformatika, termasuk diantaranya adalah perangkat lunak pencarian database dsb dengan contoh misalnya paten no. 6,125,331 di AS berjudul “Structural alignment method making use of a double dynamic programming algorithm”, (2) metode Bioinformatika, ini menggunakan analogi metode bisnis telah dapat dipatenkan di AS seperti pada kasus pematenan Amazon.com, sebagai contoh adalah paten no. 6,125,383 di AS tentang “Research system using multi-platform object oriented program language for providing objects at runtime for creating and manipulating biological or chemical data”, terakhir (3) produk Bioinformatika itu sendiri yaitu informasi biologis hasil analisanya.

ANALISA
Bioinformatika merupakan ilmu terapan yang lahir dari perkembangan teknologi informasi dibidang molekular. Pembahasan dibidang bioinformatika ini tidak terlepas dari perkembangan biologi molekular modern, salah satunya peningkatan pemahaman manusia dalam bidang genomic yang terdapat dalam molekul DNA. Genomics adalah bidang ilmu yang ada sebelum selesainya sekuen genom, kecuali dalam bentuk yang paling kasar. Genomics adalah setiap usaha untukmenganalisa atau membandingkan seluruh komplemen genetik dari satu spesies atau lebih. Secara logis tentu saja mungkin untuk membandingkan genom-genom dengan membandingkan kurang lebih suatu himpunan bagian dari gen di dalam genom yang representatif.

0 comments:

Post a Comment